
Suivi de la qualité de l'eau Lac Saint-Augustin été 2006

Préparé par :

Odette Martineau, technicienne Division de la qualité du milieu Service de l'environnement

SOMMAIRE

Comme par le passé, la Ville de Québec a poursuivi cette année le suivi de l'évolution de la qualité de l'eau du lac Saint-Augustín afin de maintenir l'historique des paramètres analysés depuis quelques années. Ces paramètres d'analyses sont rattachés aux usages récréatifs du lac Saint-Augustin. Huit (8) stations de prélèvement sur le lac ont été utilisées au cours de deux périodes d'échantillonnage (juillet et août) afin de définir l'état actuel du lac. Les résultats confirment que la présence de bactéries coliformes est faible et en deçà du critère de 200 UFC/100 ml établi par le ministère du Développement durable, de l'Environnement et des Parcs (MDDEP) pour la baignade.

En ce qui a trait à la santé de l'écosystème, les concentrations en phosphore total excèdent largement le critère d'eutrophisation. Les quantités mesurées en chlorophylle <u>a</u> indiquent un milieu lacustre riche sur le plan de la productivité biologique malgré une baisse importante de la concentration cette année par rapport aux autres années. Quant à la transparence de l'eau, elle atteint moins d'un mètre en août, ce qui est relativement similaire aux autres années et situe le lac dans la catégorie de lac dit eutrophe.

Cette année, un second volet d'étude s'est ajouté. Ce dernier était d'identifier d'autres sources pouvant accélérer le processus d'eutrophisation du lac; tous les tributaires au nord-ouest du lac ont été échantillonnés en plusieurs points de leur parcours, et ce, en temps de pluie. Cela a permis d'établir que le drainage du bassin agricole vers les lac pouvait avoir un impact non négligeable. Les résultats démontrent une contamination fécale assez élevée ainsi que des concentrations en phosphore dépassant le critère de 0,02 mg/l établi par le ministère du Développement durable, de l'Environnement et des Parcs (MDDEP) pour les cours d'eau qui se déversent dans des lacs qui ne sont pas problématiques du point de vue environnemental. Il vise à éviter la modification d'habitats dans ces lacs, notamment en y limitant la croissance d'algues et de plantes aquatiques. On peut observer sur l'une des cartes l'évolution des plantes aquatiques vers l'intérieur du lac depuis 1979.

ÉQUIPE DE TRAVAIL

Chargée du projet

Odette Martineau, technicienne en assainissement de l'eau

Superviseur

René Gélinas, directeur, Division qualité du milieu

Équipe technique

Olivier Blouin, étudiant

Étienne Walker, étudiant

Cartographie

Étienne Bellemare Racine, stagiaire

Table des matières

INT	RODU	JCTION	1
1.	MÉT	HODOLOGIE	2
	1.1	Analyses effectuées	
	1.2	Stations d'échantillonnage	2
2.	RÉS	JLTATS DE LA CAMPAGNE	4
	2.1	Profil de la température et de l'oxygène dissous	4
	2.2	Chimie organique	6
	2.3	Décompte des coliformes fécaux sur les plages du lac	
	2.4	Évolution des plantes aquatiques dans le lac	7
3.	LES 7	FRIBUTAIRES DU LAC	8
	3.1	Coliformes fécaux	8
	3.2	Le phosphore	8
4.	CON	CLUSION ET RECOMMANDATIONS	9

RÉFÉRENCE

LISTE DES TABLEAUX, FIGURES ET ANNEXES

Tableau 1	Type d'analyses par période d'échantillonnage	. 4
Tableau 2	Résultats d'analyses des nutriments pour le mois d'août	. 6
Tableau 3	Résultats d'analyses de la biomasse algale (Chl a µg/l) au lac Saint-Augustin	. 6
Tableau 4	Décompte de coliformes fécaux au lac Saint-Augustin	. 7
Figure 1	Localisation des stations d'échantillonnage	. 3
Figure 2	Distribution de la température et de l'oxygène dans la colonne d'eau	. 5
ANNEXE 1	Rapports d'analyse de coliformes fécaux au lac Saint-Augustin	
ANNEXE 2	Rapports des données météorologiques pour Saint-Augustin, juillet et août 2006	
ANNEXE 3	Figure 3 – Position des plantes présentes dans le lac Figure 4 – Points d'échantillonnage sur les bassins de drainage	

INTRODUCTION

Dans le cadre du suivi de la qualité de l'eau du lac Saint-Augustin, la Ville de Québec a effectué l'échantillonnage ainsi que l'interprétation des données de la qualité des eaux du lac obtenues à l'été 2006. Le travail avait pour objectif d'évaluer s'il y a une évolution de la qualité de l'eau par la détermination des profils physico-chimiques du lac, incluant la température, l'oxygène dissous et le pourcentage de saturation en oxygène, la transparence de l'eau, le décompte des coliformes fécaux et l'analyse du potentiel hydrogène (pH), de la biomasse algale (chlorophylle a), de l'azote (NO₃-NO₂) et du phosphore total (Pt).

Un deuxième volet voulait établir si le drainage des terres à l'ouest du lac pouvait représenter une source potentielle de contamination pour le lac en évaluant la qualité de l'eau provenant de ces tributaires en temps de pluie.

Ce rapport technique présente les résultats des diverses analyses effectuées ainsi que les recommandations pour la gestion des eaux de drainage.

Quant au suivi de la présence des cyanobactéries dans le lac, un programme d'assurance qualité pour les analyses microscopiques reste à valider avec le ministère du Développement durable, de l'Environnement et des Parcs.

1. MÉTHODOLOGIE

1.1 Campagnes d'échantillonnage

Deux campagnes d'échantillonnage sur le lac ont été effectuées au cours de la saison estivale, soit le 18 juillet et le 16 août 2006. Les conditions météorologiques ont été notées au cours des deux périodes d'échantillonnage. Lors de ces campagnes, trois aires récréatives ont été retenues en bordure de la rive pour l'analyse des coliformes fécaux. Deux autres stations en lac ont été retenues pour le suivi des paramètres physico-chimiques et biologiques sur la colonne d'eau. Une autre campagne ciblant les tributaires en temps de pluie a été effectuée le 10 août.

1.2 Stations d'échantillonnage

Cinq stations d'échantillonnage ont été identifiées à des endroits stratégiques du plan d'eau (voir figure 1) :

- J à 50 m de la rive du Camping Juneau;
- K à 10 m de la rive du Camp Kéno;
- P à 50 m de la rive de l'accès public, côté nord-est (rue Maranda);
- C partie profonde du lac;
- D partie peu profonde du lac.

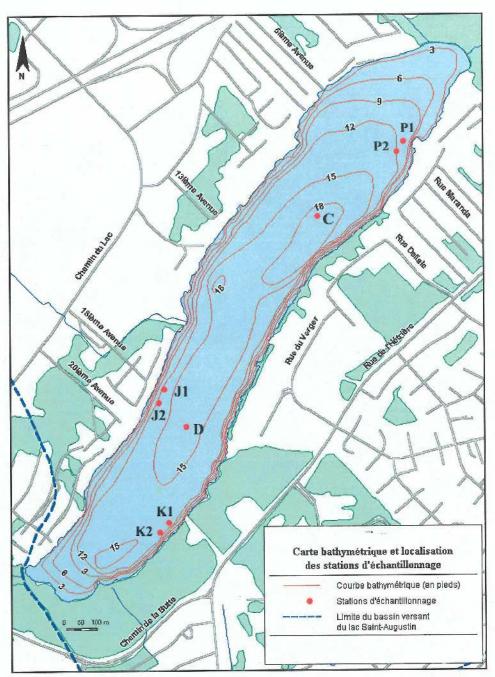


Figure 1 Localisation des stations d'échantillonnage.

Note: Pour respecter le protocole de décompte des coliformes fécaux, les stations J, P et K ont été subdivisées en deux sous-stations parallèles à la rive mais espacées l'une de l'autre par une distance de 10 à 30 m.

Le tableau suivant présente les types d'analyses effectuées à chacune des stations échantillonnées, par période d'échantillonnage.

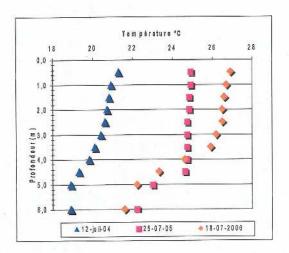
Tableau 1 Type d'analyses par période d'échantillonnage

Anghasa	18 juillet 2006				16 août 2006					
Analyses	J	к	Р	С	D	J	ĸ	· P	С	D
Physico-chimiques	-	-	-	+	+	-	-	-	+	+
Chímie organique	-	_	-	+	_	-	-	-	f	-
Biomasse	_	_	-	1	-	_	<u>-</u>	_	1	-
Microbiologiques (coliformes)	2	2	2	1	1	2	2	2	1	1

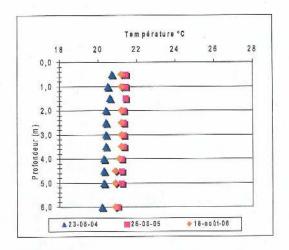
Note : « + » signifie plusieurs types de paramètres analysés et les chiffres représentent le nombre de points d'échantillonnage.

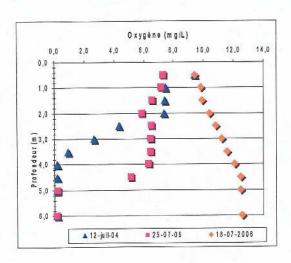
Un échantillonnage a été effectué le 10 août 2006 pour prélever les tributaires en temps de pluie. Les points d'échantillonnage sur les bassins de drainage des différents tributaires sont localisés sur la figure 4 de l'annexe 3. La contamination fécale et la concentration du phosphore ont été mesurées.

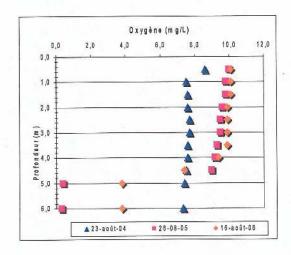
2. RÉSULTATS DE LA CAMPAGNE

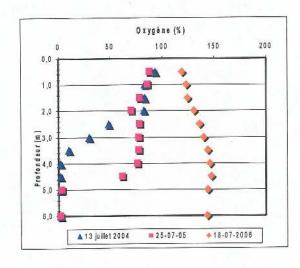

2.1 Profil de la température et de l'oxygène dissous

Les températures moyennes extérieures étaient respectivement de 20,9 et 21,4 °C pour les deux sorties sur le lac et le temps était généralement ensoleillé.


Les profils de température retrouvés dans la colonne d'eau à la station C du lac sont présentés pour les mois de juillet et août à la figure 2. Avec les années, on observe une augmentation de la température de l'eau en juillet. Une stratification de la température dans la colonne est perceptible, particulièrement cette année en juillet. Cette formation disparaît au mois d'août. Par ailleurs, la concentration d'oxygène dissous mesurée en juillet 2006 augmente en profondeur contrairement à ce qu'on a observé les années antérieures où il y avait une anoxie à partir de 5 mètres. Cela peut être le résultat de l'écart de 5,3 °C entre les températures de l'eau en surface et en profondeur qui crée une barrière temporaire au mélange de la colonne d'eau. Au mois d'août, une chute d'oxygène est perceptible sous 4 mètres d'eau.


Les premiers graphiques de la figure 2 correspondent à la variation de la température dans la colonne d'eau en juillet et en août. Les seconds donnent la concentration d'oxygène mesurée sur la colonne. Certains poissons nécessitent peu d'oxygène mais d'autres doivent chercher de nouvelles sources d'oxygène lorsqu'il y a anoxie en profondeur. Cet été nous n'avons pas enregistré d'anoxie. Les derniers graphiques représentent le pourcentage de saturation d'oxygène par rapport à la température de l'eau à pression donnée. On observe une sursaturation en juillet associable au vent et/ou à la production photosynthétique, alors qu'en août la mesure en profondeur est de 50% d'oxygène seulement, ce qui peut affecter la faune aquatique.


Juillet 2004 à 2006



Août 2004 à 2006

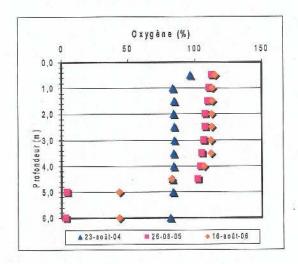


Figure 2 Distribution de la température et de l'oxygène dans la colonne d'eau

2.2 Chimie organique

L'analyse des nutriments dans la colonne d'eau a été réalisée en juillet et en août 2006 (voir tableau 2). Les résultats révèlent des concentrations sous le seuil de 0,05 mg/l pour les nitrates-nitrites. On retient comme critère de concentration totale une valeur maximale de 10 mg/l pour prévenir la contamination de l'eau. Concernant le phosphore, la distribution est sensiblement la même en surface et en profondeur pour les points C et D. Les concentrations de phosphore mesurées en profondeur sont plus élevées qu'elles ne l'étaient les années précédentes. Elles sont bien au-delà du critère d'eutrophisation fixé par le MDDEP qui est de 20 µg Pt/l (MENV, 1990).

Tableau 2 Historique des résultats d'analyses des nutriments pour le mois d'août dans les eaux du lac Saint-Augustin

Année	P(t) surface (ug/l)		P(t) for	nd (ug/l)	NO ₂ -NO ₃ (mg/l)	
VIIIICO	С	D	С	Ð	C-	D
2001	70	_	70	_		-
2004	180	200	- 90	80	0,02	-
2005	120	100	80	40	<0,02	-
2006	150	150	130	160	<0,05	-

L'analyse de la biomasse en chlorophylle <u>a</u> indique une productivité des eaux du lac Saint-Augustin au cours de l'été 2006 (tableau 3). Les résultats obtenus à la station C au cours des mois de juillet et août 2006 montrent des concentrations au-dessus du critère d'eutrophisation des eaux qui est de 15 µg/l (Wetzel, 2001). Par contre, ces derniers résultats sont très inférieurs à ceux obtenus en août lors des campagnes des années précédentes.

Tableau 3 Historique des résultats d'analyses de la blomasse algale (Chl <u>a</u> μg /l) au lac Salnt-Augustin

Année	Mi-été	Fin-été
2001	23	264
2004	N/A	75
2005	N/A	95
2006	25,6	26,6

2.3 Décompte des coliformes fécaux des secteurs récréatifs du lac

Le tableau 4 présente les résultats du décompte de coliformes fécaux obtenus pour chaque station d'échantillonnage où les activités récréatives sont fréquentes (camping, camp d'été, parc). Les rapports d'analyse du laboratoire de la Ville de Québec sont présentés à l'annexe 1.

Tableau 4 Décompte de coliformes fécaux au lac Saint-Augustin

Stations	Résultats (UFC/100 ml)					
d'échantillonnage	18 juillet 2006	16 août 2006				
J1	8	2				
J2	25	3				
K 1	3	2				
K2	20	2				
P1	7	2				
P2 ·	23	2				

Le critère de qualité pour la protection des activités récréatives et des aspects esthétiques établi par le MDDEP est de 200 UFC/100 ml pour les coliformes fécaux. Ce critère s'applique aux activités de contact primaire telles que la baignade et la voile. Les décomptes de coliformes fécaux au lac Saint-Augustin n'excèdent pas 25 UFC/100 ml. Il n'y avait donc aucune problématique en regard de ces activités au lac Saint-Augustin à l'été 2006, en conditions de temps sec.

2.4 Évolution des plantes aquatiques dans le lac

Au cours des visites, les plantes présentes dans le lac ont été positionnées approximativement sur une carte. Les données ainsi recueillies ont été géoréférencées sur une nouvelle carte (annexe 3) que nous avons comparée à celle qui présentait le même type d'information en 1976. Cette carte permet de constater la progression des plantes vers l'intérieur du lac.

3. LES TRIBUTAIRES DU LAC

3.1 Coliformes fécaux

La figure 4 (annexe 3) présente les résultats obtenus lors de la campagne d'échantillonnage effectuée en temps de pluie sur le bassin de drainage situé à l'ouest du lac. On observe que tous les fossés échantillonnés sont contaminés au-delà de la norme de 400 UFC/100 ml. Nous nous référons ici à la réglementation municipale de rejets dans les réseaux (R.V.Q. 416) qui norme à 400 UFC/100 ml la quantité maximale de coliformes fécaux acceptable dans une conduite pluviale se déchargeant dans une rivière ou un lac. Il semble qu'en temps de pluie le drainage de ces terrains pourrait devenir une source de contamination non négligeable.

Par ailleurs, on peut observer une augmentation de la contamination fécale entre les points d'échantillonnage T6A et T6B, ce qui indique qu'une source de contamination se trouve entre la 15° Rue et le 145, chemin du Lac (ferme). Également, le point T7B démontre qu'une contamination pourrait exister dans le secteur de la 18° Rue et de la 20° Rue.

Côté est du lac, on observe trois points de rejets contaminés en temps de pluie, soit T1, T9 et T8. Ces deux derniers ont été mentionnés dans le rapport de suivi de la qualité de l'eau de l'été 2005, (rapport transmis à la municipalité de Saint-Augustin); leur contamination est issue de mauvais raccordements. Il est à noter que le point T1 correspond à l'entrée d'eau provenant des marais du lac, auquel s'ajoute l'effluent du marais de l'Artimon.

3.2 Le phosphore

Les concentrations en phosphore mesurées sur les tributaires sont également indiquées sur la figure 4 (annexe 3). Le critère retenu par le MDDEP pour les cours d'eau qui se déversent dans des lacs qui ne sont pas problématiques du point de vue environnemental est de 0,02 mg/l. Ce critère vise à limiter la croissance excessive d'algues et de plantes aquatiques. Aucune des mesures relevée sur les fossés tributaires au lac ne rencontre ce critère en temps de pluie; tous les résultats se situent bien au-delà.

4. CONCLUSION ET RECOMMANDATIONS

La présente étude avait pour objectif d'effectuer un suivi de la qualité du milieu sur certains critères liés à l'écosystème au cours de la saison estivale 2006. Huit (8) stations d'analyse et d'échantillonnage sur le plan d'eau ont permis, après deux (2) campagnes d'échantillonnage réalisées au cours de l'été 2006, de tirer quelques conclusions.

On constate que la présence de coliformes fécaux est suffisamment faible pour permettre des activités de contact primaire avec des concentrations de moins de 200 UFC/100 ml en temps sec.

En ce qui a trait aux concentrations de phosphore dans le lac, elles dépassent largement le critère d'eutrophisation. Il en est de même pour la biomasse algale estimée par la concentration de la chlorophyle a.

De façon plus globale, le suivi de la qualité de l'eau du lac Saint-Augustin permet de voir s'il y a évolution des principaux paramètres physico-chimiques. En ce qui concerne le suivi des cyanobactéries, il avait été convenu que celui-ci serait fait par le MDDEP. En réalité, le ministère fera un examen des cyanobactéries seulement si une croissance soudaine leur est rapportée, ce qui n'a pas été le cas en 2006. Il faudra réévaluer s'il n'y aurait pas lieu de recommander des relevés de la présence de cyanobactéries dans les années futures.

Par ailleurs, il existe encore des problèmes importants en regard de la contamination par le phosphore :

- La contamination provenant de fosses septiques non-conformes du secteur ouest du lac; le projet pour collecter ces eaux usées devra être réactivé à cet effet.
- 2) L'apport en temps de pluie de phosphore par le drainage des terres doit être examiné de près.
- Des branchements inversés semblent encore exister dans le secteur est. Ce problème doit être réglé.
- 4) Le problème de contamination par les sels de déglaçage devrait être résolu à la suite des travaux que le ministère des Transports du Québec doit réaliser.
- 5) La recherche de solutions concernant la problématique du relargage du phosphore en lac doit être poursuivie.

Référence

EXXEP, 2004, Suivi de la qualité de l'eau - Lac Saint-Augustin - été 2004. Rapport technique présenté au Service de l'environnement de la Ville de Québec.

EXXEP, 2005 Suivi de la qualité de l'eau - Lac Saint-Augustin - été 2005. Rapport technique présenté au Service de l'environnement de la Ville de Québec.

MINISTÈRE DE L'ENVIRONNEMENT DU QUÉBEC, 1990 (révisé en 1992) : Critères de qualité de l'eau du ministère de l'Environnement du Québec, EMA 88-09, 425 pages.

WETZEL, R. 2001. Limnology: Lake and River Ecosystems, third edition, Academic press, 1006 pages.

Annexe 1

Rapports d'analyse - Lac Saint-Augustin

210, avenue Saint-Sacrement

Québec (Québec)

G1N 3X6

Rapport no: 4780

Version no: 0

Demande de travail: 14282

No de dossier: 15-151-02

Rapport d'analyse

Client : Qualité du milieu - Service de l'Environnement

Projet : Qualité du milieu - Lac Saint-Augustin

Référence du client : NA

Date d'échantillonnage: 18 juillet 2006

Date de réception: 19 juillet 2006

Responsable: Odette Martineau Requérant: Odette Martineau

Échantillonneur : Odette Martineau

Téléphone: (418) 641-6411 poste 2954

Télécopieur: (418) 641-6556

Adresse: 1595, Monseigneur-Plessis, Arrondissement 2 - Les Rivières

Québec

G1M 1A2

Échantillon numéro 115756 J 1				A
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux	8	UFC/100 ml	MLQ-Coli fécaux	19 juillet 2006
Échantiilon numéro 115757 J2				,
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux	25	UFC/100 ml	MLQ-Coli fécaux	19 juillet 2006
Échantillon numéro 115758 K 1		·		Α
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux	3	UFC/100 ml	MLQ-Coli fécaux	19 juillet 2006
Échantillon numéro 115759 K 2				A
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux	20	UFC/100 m!	MLQ-Coli fécaux	19 juillet 2006
Échantillon numéro 115761 P 2				
Paramètre	Résultat	Unitě	Méthode	Date d'analyse
Coliformes fécaux	23	UFC/100 ml	MLQ-Coli fécaux	19 juillet 2006
Échantillon numéro 115762 C 1 sur	face			Α
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Chiorophylle a	25.60	μ g /l	Analyse sous-traitée	20 juillet 2006
Coliformes fécaux	8	UFC/100 ml	MLQ-Coli fécaux	19 juillet 2006
Nitrites et nitrates	< 0.05	mg/l	ILQ-NO2 + NO3	25 juillet 2006
Phosphore total	0.09	mg/l P	ILQ-P total	26 juillet 2006

Échantillon numéro 115762 C 2 pr	rofond			A
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Phosphore total	0.25	mg/l P	iLQ-P total	26 juillet 2006
Échantilion numéro 115764 D 1 su	ırface			A
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux Phosphore total	8 0.12	UFC/100 mi mg/l P	MLQ-Coil fécaux ILQ-P total	19 juillet 2006 26 juillet 2006
Échantillon numéro 115765 D 2 for	d			A
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Phosphore total	0.15	mg/l P	ILQ-P total	26 juillet 2006
Échantillon numéro 115766 T 1				A
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux Phosphore total	400 0.11	UFC/100 ml stig/l P	MLQ-Coli fécaux ILQ-P total	19 juillet 2006 26 juillet 2006
Échantillon numéro 115767 P 3	···································			A
Paromètre	Résultat	Unlté	Méthode	Date d'analyse
Cotiformes fécaux	7	UFC/100 ml	MLQ-Coli fécaux	19 juillet 2006
Date du rapport : 11 août 2006				

Remarque:

Échantillon 115763. L'analyse des MES n'a pu être réalisée en raison d'une perte importante du volume

Procens Arbis 2410

Bay Over College

disponible.

Frédéric Aubin, B. Sc., Microbiologiste Superviseur du secteur microbiologie

Division des laboratoires

Christine Beaulieu, chimiete Superviseure du secteur chimie

Division des laboratoires

Ce rapport ne peut être reproduit, sinon en entier, sans l'autorisation écrite de la Division des laboratoires

VILLE DE QUEBEC SERVICEDELENARGAMEMENT 1 4 AUUT 2008

Division des laboratoires Service de l'environnement

Centre analytique

210, avenue Saint-Sacrement Quèbec (Québec)

Rapport no: 4897

G1N 3X6

Rapport d'analyse

Rapport no: 4897

Version no: 0

Demande de travail: 14601

No de dossier: 15-151-02

Client : Qualité du milieu - Service de l'Environnement

Projet : Qualité du milieu - Lac Saint-Augustin

Référence du client : NA

Date d'échantilionnage: 10 août 2006

Échantillonneur: Olivier Blouin

Responsable: Odette Martineau

Page 1 de 4

Date de réception : 10 août 2006

Requérant : Odette Martineau

Téléphons: (418) 641-6411 poste 2954

Télécopleur: (418) 641-6558

Adresse: 1695, Monseigneur-Plessis, Arrondissement 2 - Les Rivières

Québec

G1M 1A2

Échantillon numéro 118899	Fributaire 9			
Paramètre	Résultat	Unité	Méthode	Date d'analys
Coliformes fécaux	1000	UFC/100 mt	MtLQ-Coli fécaux	10 août 2006
Phosphore total	0.06	mg/l P	ILQ-P total	18 a oùt 2006
Échantillon numéro 118892	Fributaire 10			
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux	3800	UFC/100 ml	MLQ-Coli fécaux	10 août 2006
Phosphore total	0.06	mg/l P	ILQ-P total	18 août 2006
Échantillon numéro 118893 7	Fributaire 12			
Paramètre	Résultat	Unité	Méthode	Date d'anulyse
Coliformes fécaux	6800	UFC/100 ml	MLQ-Coli fécaux	10 août 2006
Phosphore total	0.04	mg/l P	ILQ-P total	18 août 2006
Échantiilon numéro 118894 l	ributaire 15			Α
Poramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux	7000	UFC/100 ml	MLQ-Coli fécaux	10 aoû t 2006
Phosphore total	9.05	mg/l P	ILQ-P total	18 août 2006
Échantillon numéro 118895 1	ributaire 11			
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux	1900	UFC/100 ml	MLQ-Coli fécaux	10 août 2006
Phosphore total	C.05	√ mg/! P	JLQ-P total	18 août 2006

F-13-02-05, 31-03-05

Échantillon numéro 118896	Tributaire 8			A
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux	5200	UFC/100 ml	MLQ-Coli fécaux	,10 août 2006
Phosphore total	0.08	mg/i P	ILQ-P total	18 août 2006
Échantillon numéro 118897	Tributaire 13		·············	Α
Paramètre	Résultat	Unité	Méthode	Date d'anaiyse
Coliformes fécaux	4000	UFC/100 ml	MŁQ-Coli fécaux	10 août 2006
Phosphore total	0.08	mg/l P	ILQ-P total	18 août 2005
Échantillon numéro 118898	Tributaire 14	<u> </u>		<u> </u>
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux	1100	UFC/100 ml	MLQ-Coli fécaux	10 août 2006
Phosphore total	0.05	mg/l P	iLQ-P total	18 août 2006
Échantillon numéro 1189021	Fributaire 16 Kéno			<u> </u>
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux	460	UFC/100 ml	MLQ-Coli fécaux	10 août 2006
Phosphore total	0.04	mg/l P	ILQ-P total	18 août 2006
Échantillon numéro 118904	Fributaire 2A amont 40		······································	
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux	1800	UFC/100 ml	MLQ-Coli fécaux	10 août 2006
Phosphere total	0.12	mg/l P	ILQ-P total	18 août 2006
Échantillon numéro 118905	Fributaire ouest aval 40			А
Paramètre	Résultai	Unité	Méthode	Date d'analyse
Coliformes fécaux	5600	UFC/100 ml	MLQ-Coll fécaux	10 août 2006
Phosphore total	0.04	mg/l ₽	ILQ-P total	14 août 2006
Échantillon numèro 118907 l	Fributaire est aval 40	- Mile a mark Mile State (Mile	MB (MFEAN), 1947 half AF , This Willer, 1948 happy magning and an incident	Α
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux	1590	UFC/100 ml	MLQ-Coli fécaux	10 août 2006
Phosphore total	0.09	mg/î P	ILQ-P total	14 août 2006

Échantillon numéro 118908				
Paramètre	Résultat	Unité	Méthode	Date d'analys
Coliformes fécaux	2400	UFC/100 ml	MLQ-Coll fécaux	10 août 2006
Phosphore total	0.07	mg/l P	ILQ-P total	14 août 2006
Échantillon numéro 118913	Tributaire 2042 9e ave.			
Paramètre	Résultat	Unité	Méthode	Date d'analys
Coliformes fecaux	1200	UFC/100 ml	MLQ-Coli fécaux	10 acût 2006
Phosphore total	0.10	mg/l P	ILQ-P total	14 acūt 2006
Échantillon numéro 118915	Tributaire 4 domaine des	Cing		·
Paramèire	Résultat	Unité	Méthode	Date d'analys
Coliformes fécaux	2500	UFC/100 ml	MLQ-Coli fécaux	10 août 2006
Echantillon numéro 118917	Tributaire SA Petit Pré			
Paramètre	Résultat	Unité	Méthode	Date d'analys
Coliformes fécaux	>6000	UFC/100 ml	MLQ-Coli fécaux	11 août 2006
Phosphore total	0.42	mg/l P	ILQ-P total	1 4 août 2 006
Échantillon numéro 118929 l	Fributaire SB point de reje	et		
Paramètre	Résultat	Unité	Méthode	Date d'analys
Coliformes fécaux	>6000	UFC/100 ml	MLQ-Coli fécaux	11 août 2006
Phosphore total	0.22	mg/I P	ILQ-P total	14 août 2006
Schantillon numéro 118927 T	Fributaire 6A ch. Du Lac C	Duest		
Paramètre	Résultat	Unité	Méthode	Date d'analys
Coliformes fécaux	230	UFC/100 ml	MLQ-Coli fécaux	11 août 2006
Phosphore total	0.05	mg/i P	ILQ-P totai	14 août 2006
Échantillon numéro 118936 T	Fributaire 68 point de reje	ot		. 16. 1984
Paramètre	Résultat	Unité	Méthode	Date d'analys
Coliformes fécaux	5600	UFC/100 ml	MLQ-Coli fécaux	11 août 2006
hosphore total	0.07	mg/l P	ILQ-P total	14 août 2006

Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes fécaux	5300	UFC/100 ml	MLQ-Coli fécaux	11 août 2006
Phosphore total	0.10	mg/l P	ILQ-P total	14 août 2008

Echantillon numéro 118935 i ributaire	78 18e ave.			A
Paramètre	Résultat	Unité	Méthode	Date d'analyse
Coliformes féczux	5800	UFC/100 ml	MLQ-Coli fécaux	11 août 2006
Phosphore total	0.15	mg/I P	ILQ-P total	18 août 2006

Échantillon numéro 118937	Tributaire 7C point de reje	et		A	
Paramètre	Résultat	Unité	Méthode	Date d'analyse	
Coliformes fécaux	5500	UFC/100 ml	MLQ-Coli fécaux	11 août 2006	
Phosphore total	0.12	mg/t P	It.Q-P total	14 acût 2006	

Date du rapport: 31 août 2006

Remarque:

Frédéric Aubin, B. Sc., Microbiologiste

Division des laboratoires

Christine Beaulieu, chimiste/ Superviseure du secteur chimie Division des laboratoires/

Ce rapport ne peut être reproduit, sinon en entier, sans l'autorisation écrite de la Division des laboratoires

VILLE DE QUÉBEC SERVICE DE L'ENVIRONNEMENT

0 5 SEP. 2006

Division des laboratoires Service de l'environnement

Centre analytique

210, avenue Saint-Sacrement Québec (Québec) G1N 3X6

Rapport d'analyse <u>VILLE DE QUÉBEC</u>

Rapport no: 4922 Version no: 0

Demande de travail: 14691 No de dossier: 15-151-02

Client : Qualité du milieu - Service de l'Environnement

Projet : Qualité du milieu - Lac Saint-Augustin Référence du client : NA

Date d'échantillonnage: 16 août 2006

Date de réception: 16 août 2006

Échantillonneur : Olivier Blouin

Responsable: Odette Martineau Requérant : Odette Martineau

Téléphone: (418) 641-6411 poste 2954

SERVICE DE L'ENVIRONNEMENT

Télécopieur: (418) 541-6556

Adresse: 1595, Monseigneur-Plessis, Arrondissement 2 - Les Rivières

Québec

Échantillon numéro 119778 J1				A	
Paramètre	Résultat	Unité	Méthode	Date d'analyse	
Collformes fécaux	2	UFC/100 ml	MLQ-Coli fécaux	17 août 2006	
Échantillon numéro 119779 J2		No. / /			
Paramètre	Résultat	Unité	Méthode	Date d'analyse	
Coliformes fécaux	3	UFC/100 ml	MLQ-Coli fécaux	17 août 2006	
Échantillon numéro 119789 K1			The second secon	A	
Paramètre	Résultat	Unité	Méthode	Date d'analyse	
Coliformes fécaux	2	UFC/100 ml	MLQ-Coli fécaux	17 août 2006	
Échantillon numéro 119781 K2	··· ··· · · · · · · · · · · · · · · ·	····		A	
Paramètre	Résultat	Unité	Méthode	Date d'analyse	
Coliformes fécaux	<2	UFC/100 mi	MLQ-Coli fécaux	17 août 2006	
Échantillon numéro 119782 P1		<u> </u>			
Paramètre	Résuitat	Unité	Méthode	Date d'analyse	
Coliformes fécaux	<2	UFC/100 ml	MLQ-Coli fécaux	17 août 2006	
Échantillon numéro 119783 P2	· · · · · · · · · · · · · · · · · · ·			A	
Paramètre	Résultat	Unité	Méthode	Date d'analyse	
Califormes fécaux	2	UFC/100 ml	MLQ-Coll fécaux	17 apůl 2006	

Échantilion numéro 119784 C1 Sur	face					
Paramètre	Résultat	Unité	Méthode	Date d'analys		
Chlorophylie a	26.60	µg/l	Analyse sous-traitée	18 août 2006		
Coliformes fécaux	<2	UFC/100 ml	MLQ-Coli fécaux	17 août 2006		
Nitrites et nitrates	< 0.05	mg/l	ILQ-NO2 + NO3	23 août 2006		
Phosphore total	0.15	mg/l P	ILQ-P total	22 août 2006		
Échantillon numéro 119785 C2 Pro	fond	***************************************				
Paramètre	Résultat	tat Unité Méthode Date d'ana		Date d'analyse		
Phosphore total	0.13	mg/l P	ILQ-P total	22 août 2006		
Échantillon numéro 119786 D1 Sur	face					
Paramèt r e	Résultat	Unité	Méthode	Date d'analyse		
Coliformes fécaux	<2	UFC/100 ml	MLQ-Coli fécaux	17 août 2006		
Phosphore total	0.15	mg/l P	ILQ-P total	22 août 2006		
Échantillon numéro 119787 D2				Α		
Paramètre	Résultat	Unité	Méthode	Date d'analyse		
Phosphore total	0.18	mg/I P	ILQ-P total	22 août 2006		
Échantillon numéro 119788 T1	· · · · · · · · · · · · · · · · · ·					
Paramètre	Résultat	Unité	Méthode	Date d'analyse		
Coliformes fécaux	33	UFC/100 ml	MLQ-Coli fécaux	17 août 2006		
Phosphore total	0.09	mg/l P	ILQ-P total	22 août 2006		

Date du rapport : 6 septembre 2006

Remarque:

Frédéric Aubin, B. Sc., Microbiologiste Superviseur du secteur microbiologie

Division des laboratoires

Christine Beaulieu, chimiste Superviseure du secteur chimle Division des laboratoires

Ce rapport ne peut être reproduit, sinon en entier, sans l'autorisation écrite de la Division des laboratoires

Rapport no : 4922 F-13-02-05, 31-03-05 Page 2 de 2

Annexe 2

Rapports des données météorologiques pour Saint-Augustin

Juillet et août 2006

Environment Carada

Environnement Canade

Rapport de donn 🗆 es quotidiennes pour août 2006

Notes sur qualit des donn es climatiques.

QUEBEC/JEAN LESAGE INTL QUEBBC:

Latitude: 46° 47' N

Longitude: 71° 22' O

Attitude: 74,10 m

Identification Climat: 701S001 Identification OMM: 71714

Identification TC: WQB

I trained Temport trained that DN						Support the Morter of special pages and follows: *Policy: Legista Value & Discount Discount Co. cal.					
	\$4.	· · · · · · · · · · · · · · · · · · ·	¢ ₆	*	€ .	7,290K 23 20,80	<u>15125-51</u> 281	2,000,000	1.78.4 M.A. 1.78.4 M.A.	iva beg	
. H	K	ď	鱼	紅	M			₩			
01	25,2	19,6	22,4	0,0	4,4	22 23	9.22777211111111111111111111111111111111	12,0			
02	28.2	19.9	111	0,0	6.1			933			
<u>Q</u>	28,8	f7,9 }	23,4	0,0	5,4			Ţ		CXX	2-2
94	28.2	1117	21,1	0,0	3,1	#		15.7	, ,		
42	23,0	12,5	17,8	6,2	0,0			0,0			
M	43,5		18.1	3,6	6.4		***************************************	7,7			
97	28,3	15,4	21,9	0,0	3,9			Ţ		***************************************	
<u>M</u>	24.7	123	18.5	0.0	0,6		Mindere	D	,		
09	24,5 } 22.0	9,4 80,3	17,0 16,5	1,0 1,7	6,0 6.0			0,0 9,0			
110	21,3	8,0	14,7	3.3	0.0			7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.			
12	21,3 21,3	8.2	14,7	3,7	0,0,			1			200
	21,6	7,1	14,4	3,6	0.0			0.0	801 <u>111</u>		
u u	20.4	9 g	14.5		0.0			1,3			almenini.
15	24,3	14,4	19,4	O,O;	1,4			13,0			
<u>15</u> 26	34.2	124	18.4	0.0	0.4			34			omounus su s
1.7	24,2	12,3	18,3	0,0	0,3		***************************************	0,0		777	
18	ž7 1	11	,11,%	0,0	2.8			93	·///Yeartobalton-Fall		
19	27,3	14,9	21,1	0.6	3,1			0,0			
20	19.0	12.9	9.0	2.00	9.0			154			
21	23,5	12,6	18,1	0,0	0,1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		48	1,12,00,000		
22	22.5	10,1	16.4	1,6	8.0			· "		<u> </u>	
<u>23</u>	18,2	8.7	13,5	4,5	0,0			T			cccconstrate and constrain
24	18.9	**	11,4	42	0.0	althan a commi					
15	19.8 70.3	5,3 #.s	12,6	5,4;	0,0			0.0		Į.	
26	×,	864: 41.41) 4 <i>) paag genad</i> a 00000000000000000000000000000000000	16.3	3.7	9.0	wwww		0.0			
27	35,4 70,7	10,5 12,5	13,0	5,0	0,0}			19,0			
28 29	23,8	14,1	19,0	0,0	I.U						······································
30	18.7	0.5	14.8	4.0	00			6,3			
31	22.2	7,5	14.9	3,1	0.0			0,0			
Somme				53.7	33.£		······································	\$10.4			
May.	25,0	11,6	17,3	7.7				478.5			
Bat.	33,6	4,6		70770							

Légende Ogtions de navioation

Environment Canada

Environnement Canada

Rapport de donn les quotidiennes pour juillet 2006

Notes sur qualit des donn les climatiques.

QUEBECIJEAN LESAGE INTL QUEBEC

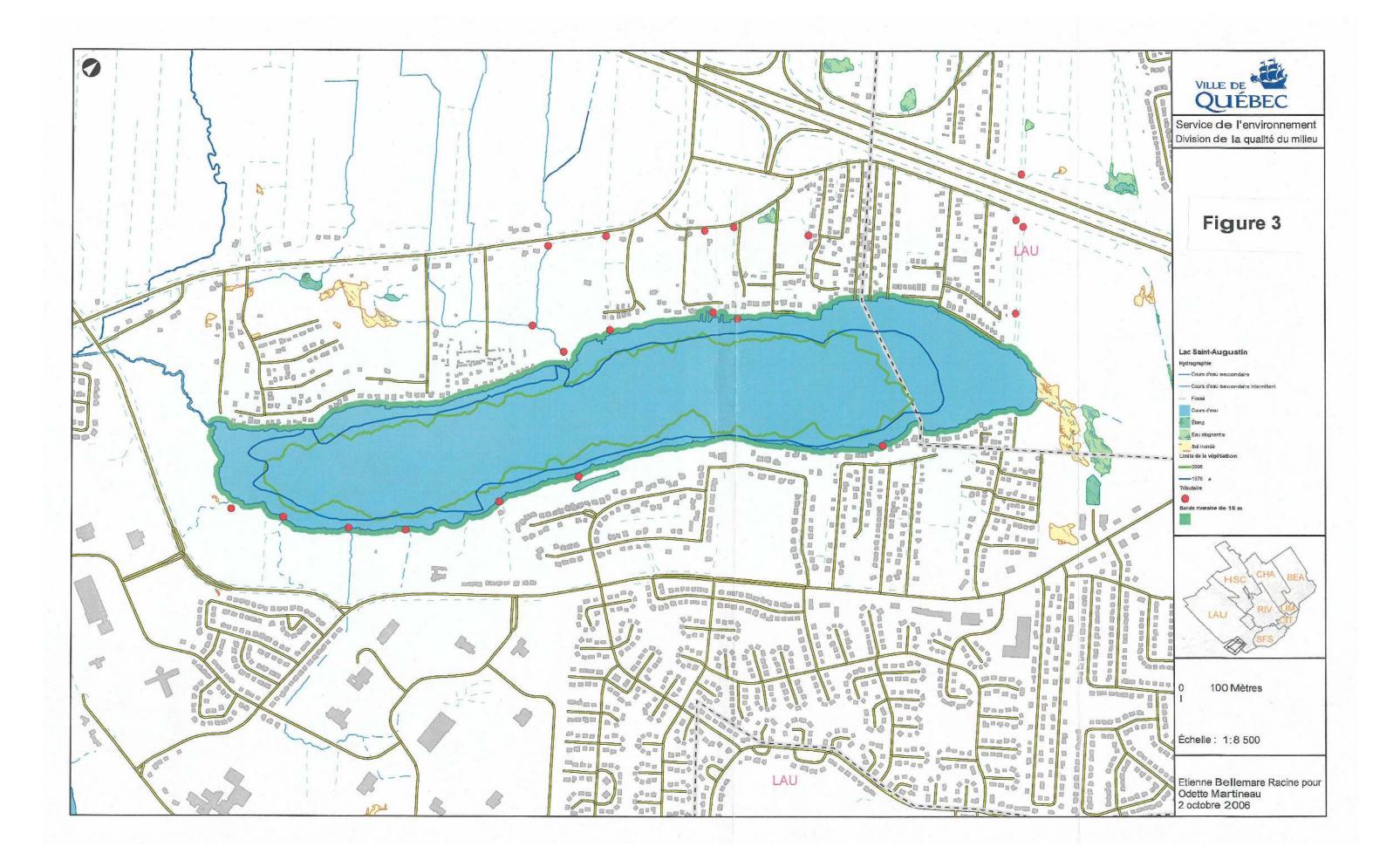
Latitude: 46° 47' N

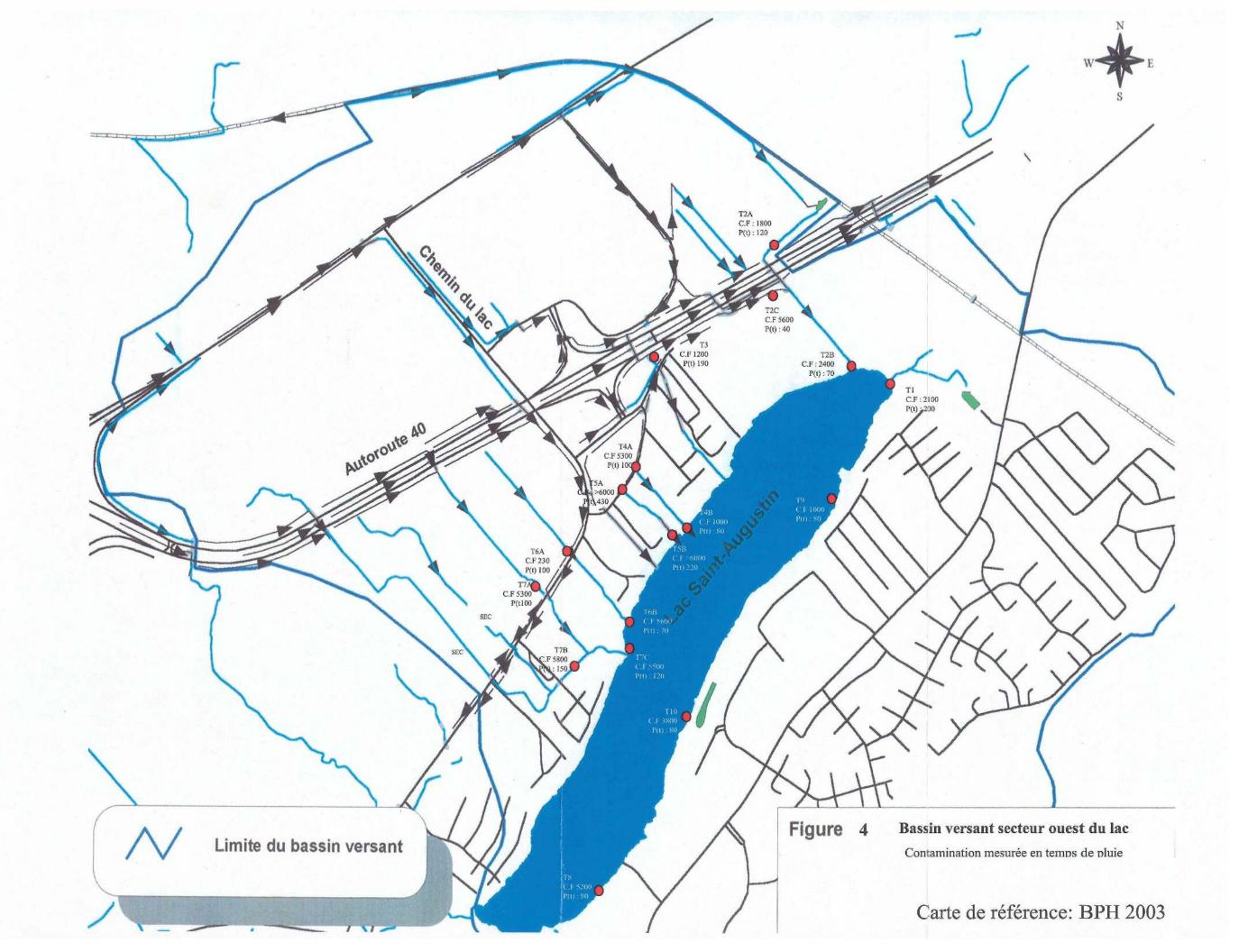
Longitude: 71° 22' O

Attitude: 74,10 m

Identification Chast: 7018001 Identification OMM: 71714

Identification TC: WQB


				Pagyart de domades quedidisames paur juifich, 1986								
£	Tempora Tempora Tem		icap, we	DUC C	DIE	Plate to	Neige in	Prop. K	Neigrau 5	Dir raf asc	VII. ref. sec	
6	M.	w.	M	μď	æ	50200	4385	mm <u>W</u>	t yn	1974 Beg	km/g	
	22,2	13,4	17.8	0.2	an morning (are						7/7(CVT	
91	21,2	13,4	17,8 :	1.5				2,9				
92 93	23,4	11,1	17,3	0.7				12.2 T				
M	26.4	3.4	20.9	0,0				11.1				
05	23,8	13,2	18,5	0,0				T				
04	12.5	11,4	1770	1,0	13,4 3	~		Ť			700000000000000000000000000000000000000	
07	25,5	11,1	18,3	0,0		20000000000000000000000000000000000000	·	0.0				
189	28 3 1	14 N	21,4	2.0	2,6		·	Ç ü		1		
<u>89</u>	28,0	15,1	21,6	0,0	~~~~~~~~~	······································	ammanana	0,0			rescretors - / grant - / g	
<u>IB</u>	34,7	15.0	199	0,0	1,9			7				
u	27,3	14,6	21,0	0,0	3,0		*	T				
J 2	27.6	17.5	22,6	0.0	4.6			6.0				
<u>13</u>	28,0	16,7	22,4	0,0	4,4			0,0	***************************************	2	anagaran matama	
14	764	19.5	13.4	0,0	7.0			\$0				
<u>15</u>	25,9	19,4	23,2	0,0	5,2			1,9				
iá	24.8	18.5	2 4 ,7	6,0	6.2			11,9				
17	31,0	18,6	24,8	6,0	6,8			26,3				
18	25,7	15.0	244	0,0	2,4		~ 2 2	5.0				
19	26,7	13,9	20,3	0,0	2,3		monnitonota	0,0 {				
24	24,5	14,1	200	0,0	4.3			7				
21	27,7	. 17,1	22,4	0,0	4,4		<u> </u>	3,3	a			
₩	21,3	16,3	14.4	6.0	1.5			1,3		Assess of the second second second		
<u>23</u>	22,6	14,8	18,7	0,0	0,7		ecusararammagnes	T		; ;		
A3		14.1	190	0,0	1,0			3,0	1991011 11111111111			
25	25,6	16,7	21,2	0,0	3.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		6,0			777777777777	
28	38.3	18.6	18,3	¥.9	5.3			0.0				
<u>27</u>	28,2	17.1	22,7	0,0	4,7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	15,0		I		
15 20	36.1	19.3	20.6	0.0	4.7 2.5			1				
2 <u>9</u>	28,9 23,8	12,1	20,5 { 16.9	0,0	2,5; 6,8			0,0				
30 31	25,9	13,7	19,8	0.0	1.8			8,0 0,0		.,,,,,		
Someone	43,7	13,7	17,0	4.5	1,6; \$9,6		· · · · · · · · · · · · · · · · · · ·	0,0 101,5			7	
Mat.	26,3	16,2	24.8	48, 7	67.E			¥, evi				
, ener. Zer	3 <u>2,4</u>	10,3	#14.0									


tárence

Annexe 3

Figure 3 - Position des plantes présentes dans le lac

Figure 4 - Points d'échantillonnage sur les bassins de drainage

